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ABSTRACT

Quintessence is a hypothesized scalar field forming a popular model for dark energy, the non-

luminous energy density in the Universe responsible for the accelerated expansion of space.

This field can change in time and henceforth solve difficulties arising in the ΛCDM standard

model. The dynamics of the field are governed by its self-interaction potential. To infer the

form of this potential by observational data, we construct a suitable potential using machine

learning and derive the observable quantities then numerically. Symbolic regression is a form

of supervised learning, with the aim of finding the most likely symbolic representations of

mathematical models for a given data set.

We demonstrate how to build a symbolic regression machine learning pipeline, searching

for self-interaction potentials of the quintessence scalar field Lagrangian. To construct this

pipeline, we first implement a symbolic regression algorithm searching for classical Lagrangian

potentials and discuss its ability to solve the problem for artificial data. For upgrading this al-

gorithm to search for quintessence potentials, we assembly an automatic process of evaluating

the individual potentials and comparing the resulting models to data of supernovae type Ia

with Bayesian statistics. We discuss the difficulties of automatically assigning Bayesian mea-

sures due to the high complexity of the fitness process as well as limited computing strength.

We conclude, that our symbolic regression pipeline is capable of finding suitable quintessence

potentials under consideration of sufficiently diverse function populations.
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ZUSAMMENFASSUNG

Quintessenz ist ein hypothetisches skalares Feld und ein beliebtes Modell für dunkle Energie,

die unsichtbare Energiedichte im Universum, verantwortlich für die beschleunigte Expansion

des Weltraums. Dieses Feld ist zeitveränderlich und kann somit viele der Schwierigkeiten

lösen, die im ΛCDM Standardmodell entstehen. Die Dynamik des Feldes ist bestimmt durch

sein Selbstwechselwirkungspotential. Um die Form dieses Potentials von Beobachtungsdaten

abzuleiten, konstruieren wir mithilfe von maschinellem Lernen ein geeignetes Potential und

bestimmen die beobachtbaren Größen numerisch. Symbolic Regression ist eine Form von

betreutem Lernen mit dem Ziel die wahrscheinlichsten symbolischen Darstellungen mathe-

matischer Modelle eines gegebenen Datensatzen zu finden.

Wir demonstrieren wie eine Symbolic Regression Machine Learning Pipeline gebaut wird,

welche nach selbstwechselwirkungs-Potentialen der skalaren Quintessence Lagrangedichte

sucht. Um diese Pipeline zu konstruieren, implementieren wir zuerst einen Symbolic Regres-

sion Algorithmus, welcher nach klassischen Lagrange’schen Potentialen sucht, und disku-

tieren seine Fähigkeit das Problem für ein künstlichen Datensatz zu lösen. Der Algorith-

mus wird erweitert um nach Quintessenzpotentialen zu suchen. Wir erstellen daher einen

automatischen Prozess, welcher die individuellen Potentiale auswertet und die sich ergeben-

den Modelle mit den Daten von Supernovae Type Ia mittels Bayes’scher Statistik vergleicht.

Wir diskutieren die Schwierigkeiten der automatischen Zuordnung Bayes’scher Maße durch

die hohe Komplexität des Fitness-Prozesses sowie beschränkter Rechenstärke. Wir schlussfol-

gern, dass unsere Symbolic Regression Pipeline, unter Anbetracht hinreichend diverser Funk-

tionspopulationen, in der Lage dazu ist geeignete Quintessenzpotentiale zu finden.
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Chapter One

THEORETICAL FOUNDATION

1.1 Introduction

Understanding the world we live in and the motion of the celestial bodies has been in the

interest of mankind, one way or another, since the beginning of the first civilizations. The

study of the Universe as a whole is named cosmology (from the Greek κóσµoλoγία, kosmos

”world” and -logia ”study of”). Even though in the ancient world some remarkable work was

done on the systematic study, mathematical modeling and prediction of the "heavenly bodies",

late advancements in technology, as well as in physics and mathematics, have facilitated the

constuction of revolutionary new models of cosmologies and ways to test them with unprece-

dented precision.

Today’s standard model of physical cosmology is derived from Albert Einstein’s theory of

general relativity. Under the use of universal symmetries, Alexander Friedmann was able to

reformulate Einstein’s field equations into differential equations describing the dynamics of

the Universe. Unfortunately, many physicists at that time, including Einstein, were still con-

vinced of the static and stationary nature of our Universe. Nevertheless, the eventuality of a

dynamic cosmos lead Edwin Hubble to the breakthrough discovery of the proportionality of

the velocity and distance of near galaxies, and hence to a renaissance of physical cosmology.

After accumulating observational data of high distance supernovae Type Ia (SNe Ia) by the

year 1998, Riess and Perlmutter et. al. reported that the Universe is accelerating [1, 2]. The

source of this accelerated expansion is called "Dark Energy". This form of energy can be

clearly distinguished from other ordinary and dark matter in the Universe, but yet its pre-

cise nature could not be revealed to full satisfaction. The main lack of confidence may not

1



2 1.1. INTRODUCTION

essentially be found in the prediction of observational data, but in the emergence of further

obstacles, discussed in more detail later.

Already over a decade earlier, Ratra, Peebles and Wetterich suggested a self interacting scalar

field causing the inflationary expansion in very early times of[3, 4]. But only with the discov-

ery of the Higgs boson in 2012, the existence of scalar fields in nature could be proven. This

gave rise to the natural conclusion of a self interacting scalar field, called quintessence, and its

energy density governing the accelerated expansion of our Universe today.

In order to quantitatively analyze the massive amounts of data present in astronomy without

human bias, machine learning has become one of the most promising technologies in physics

and other sciences in general. As young as the modern improvements in machine based learn-

ing may be, the underlying statistics have come a long way and were revolutionized in the 18th

century by the British mathematician and philosopher Thomas Bayes and his well-known the-

orem. Further development of probability theory and the growth in computing power has

recently entered a new era of advanced statistical optimization, commonly referred to as ”ar-

tificial intelligence”.

Besides the popular neural networks employed for deep learning, genetic programming offers

another very promising framework for machine learning algorithms. Symbolic regression is an

interesting example of genetic programming, designed to search the space of symbolic and, in

particular, human readable mathematical expressions. Schmidt and Lipson even demonstrated

that symbolic regression is capable of finding free-form natural laws from experimental data

even if the systems observables exhibit chaotic behaviour [5].

The aim of this thesis is to demonstrate and discuss a self-developed symbolic regression

machine learning pipeline, capable of finding suitable dark energy models, i.e. symbolic in-

teraction potentials of the quintessence action by means of Bayesian statistics and constraints

of the SNe Ia data.
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1.2 Cosmology

Physical cosmology rests on the two very fundamental assumptions, namely homogeneity and

isotropy of our Universe. The first one based on the cosmological principle and reflects the

Copernican revolution, that our position in the Universe is by no means preferred over any

other. The second one states the independence of the direction of observation. The discovery

of the 2.7K cosmic microwave background (CMB) radiation [6] and the Baryo-acoustic oscil-

lations (BAO) [7] brought evidence supporting those assumptions.

In the following we will adapt natural units, i.e. c = ~ = 1, unless stated otherwise.

1.2.1 Spacetime Geometry

In Einstein’s general theory of relativity, space and time are solely degrees of freedom of a four

dimensional pseudo-Riemannian manifold [8]. The position of an object in this space-time is

described by the contravariant four vector

xµ = (t, xi)T xi = (x1, x2, x3)T (1.1)

The 0th component is the time component of the four vector, the other three are the spatial

coordinates. We employ Greek indices running from 0 to 3 as notation for the whole four-

vector in a given coordinate basis and Latin indices (e.g. xi) for the spatial dimensions running

from 1 to 3.

The separation of two points in a curved spacetime is quantified by the metric tensor gµν. The

infinitesimal distance is called the line element ds, which, on the other hand, defines the metric

tensor

ds2 = dx · dx = dxµdxµ = gµνdxµdxν (1.2)

where we used the Einstein convention, summing over identical lowered and raised indices.

The dynamics of the metric tensor is governed by Einstein’s field equations

Gµν ≡ Rµν −
R
2

gµν = 8πGTµν + Λgµν (1.3)
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where Gµν is called the Einstein tensor and G is the gravitational constant. The left-hand side

of Eq. (1.3) describes the curvature of space-time. The right-hand side specifies the energy

content within the energy-momentum tensor. Curvature is described by means of the so called

Christoffel symbols Γ and their derivatives in the Ricci curvature tensor

Rµν = ∂ρΓ
ρ
νµ − ∂νΓ

ρ
ρµ + Γ

ρ
ρλΓ

λ
νµ − Γ

ρ
νλΓ

λ
ρµ (1.4)

If we chose the Levi-Civita connection (metric compatible and torsion-free, i.e. ∇g = 0 and

Γαµν = Γανµ), the Christoffel symbols can be derived easily from the metric as

Γαµν =
1
2

gαβ
(
∂gνα
∂xµ

+
∂gµβ
∂xν
−
∂gµν
∂xβ

)
(1.5)

The Ricci scalar R is simply the contraction or the trace of the Ricci curvature tensor with the

metric tensor

R = gµνRµν = Rµ
µ . (1.6)

Λ is called the cosmological constant and a possible candidate for dark energy. It describes a

degree of freedom in the Einstein field equations and is discussed in more detail later.

Assuming homogeneity and isotropy, we can construct the most general metric fulfilling these

symmetries, the Friedmann-Lamaître-Robertson-Walker (FLRW) metric, with the correspond-

ing line element

ds2 = −dt2 + a2(t)
(

dr2

1 − Kr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2
)

(1.7)

where a is the cosmic scale factor, characterizing the spatial distance of all points in space,

and K is a constant, parameterizing the curvature of space.

Evaluating the Christoffel symbols (1.5) in the FLRW-metric (1.7) (See [9]), we can rewrite

Einstein’s Eqs. (1.3) into two differential equations of the scale factor a

H2 =

( ȧ
a

)2

=
8πG

3
ρ −

K
a2 +

Λ

3
(1.8)

3H2 + 2Ḣ = −8πGP −
K
a2 +

Λ

3
(1.9)
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These central results are the so-called first and second Friedmann equations. The first Fried-

mann equation quantifies the expansion rate of the cosmos and is defined as

H ≡
ȧ
a

(1.10)

where H is called the Hubble parameter.

The second Friedmann equation is also called the acceleration equation and will be of impor-

tance later, as we will study the accelerated expansion of the cosmos.

We further consider the energy-momentum tensor of an ideal fluid with an energy density ρ

and pressure P as our cosmic fluid

T µ
ν = (ρ + P)uµuν + Pδµν . (1.11)

A third equation can be derived from energy-momentum conservation

∇µT µν = 0 ⇒
dρ
dt

+ 3
ȧ
a

(ρ + P) = 0 (1.12)

From statistical physics we know that the equation of state for an ideal fluid reads

w ≡
P
ρ

(1.13)

We can solve the differential equation (1.8, 1.9) by separation of variables, giving us an im-

plicit time dependence of ρ in terms of a(t). The power of the time-scaling is determined by

the equation of state parameter w as

ρ ∝ a−3(1+w) (1.14)

Since our Universe is not filled with one single type of matter, we have to consider different

energy species scaling separately in time, depending on their w. We can expand the energy

density ρ in the Friedmann equations as a sum over all possible powers of a and their contri-

bution to the full energy density

ρ =

∞∑
n=−∞

ρnan (1.15)
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For cold matter, i.e. dark and baryonic matter, we know from statistical physics that the

pressure of those gases is negligible, i.e. P = 0. Hence, the energy density of cold matter

scales with

ρ ∝ a−3 (1.16)

For hot, relativistic gases, such as electromagnetic radiation or neutrinos, the relation between

pressure and energy density is given by P = ρ/3, thus its energy density scales with

ρ ∝ a−4 (1.17)

We can define a critical energy density, at which the curvature of the spatial hypersurfaces K

vanishes. This is the case if the entire energy density of the cosmos matches the critical value

ρcrit(t) =
3H2(t)
8πG

(1.18)

Recent work in astronomy has accumulated evidence, that the curvature of the Universe is

negligible today [9]. We therefore assume K = 0 in the following and thus, the entire energy

density ρ of the Universe to be equal to the critical value ρcrit. Having this natural scale at

hand, we can now define the simple dimensionless density parameters, commonly used in

cosmological calculations, each having their respective index

Ωi(t) :=
ρi(t)
ρcrit(t)

Ωi =
8πG
3H2 ρi (1.19)

Additionally, we recognise the curvature K and the cosmological constant Λ as energy densi-

ties too

ΩK :=
−K

(aH)2 ΩΛ :=
Λ

3H2 (1.20)

The sum over all density parameters has to equal unity by definition, i.e.∑
i

Ωi = 1 (1.21)

We further denote the values of the parameters today with a null-index

ρcrit(t0) =
3H2(t0)

8πG
:= ρ0

crit, Ωi(t0) := Ω0
i (1.22)
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With measurements of the parameters [10], we can bring the Friedmann equation into a much

simpler form, the Hubble function

H(a) = H0

√∑
i

Ω0
i

a3(1+wi)
(1.23)

= H0E(a) (1.24)

where we defined the expansion function

E(a) :=
H(a)
H0

(1.25)

with H0 ≡ H(t0) being today’s rate of expansion.

1.2.2 Hubble’s Law

The frequencies of waves emitted by a moving source are shifted depending on the velocity

of the source relative to an observer. This effect is called Doppler shift and is widely used in

astronomy to measure the relative speed of distant stars and galaxies by comparing the spectral

lines of astronomical light sources with well studied atomic and molecular transition spectra.

Edwin Hubble discovered that most of the very distant galaxies appear to have a red-shifted

spectrum in proportion to their estimated distance. He concluded that, since our position in

the Universe is by no means preferred over any other, that the Universe is expanding and all

objects in space drift apart from each other.

Mathematically speaking, the expansion of the Universe is expressed by the time-dependence

of the scale factor a. The relative amount of the wavelength shift λ compared to the expected

wavelength λ0 and its relation to the scale factor a is defined as the redshift z

z ≡
λ − λ0

λ0
=

a0

a
− 1 ⇒ a =

1
1 + z

(1.26)

where, by definition, the present value of the scale factor is a0 = 1, and hence z = 0 today. As

long as the recessional velocity υ of an object is much smaller than the speed of light c, we
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approximately obtain a linear proportionality between redshift and velocity,

λ0 ≈

(
1 +

υ

c

)
λ ⇔ z ≈ υ/c (1.27)

The physical distance r and its derivative with respect to time in an expanding Universe is

given by

r = a(t)x ⇒ ṙ = Hr + aẋ (1.28)

where a is the scale factor and x denotes the comoving distance. The speed of an object along

the direction between an observer and the object is given by

υ ≡ ṙ ·
r
r

= Hr + υp ·
r
r

(1.29)

where r = |r| and υp is the so-called peculiar velocity.

Most galaxies do not exceed the speed of 106 m/s in the local universe [9], so the peculiar

velocity υp can be neglected. This gives us Hubble’s Law

υ ≈ H0r (1.30)

where we have replaced H with its current value H0, justifiable for a small redshift region

(z � 1).

It is common to set the value of the Hubble constant to

H0 = 100h
km

s Mpc
= 2.1332h × 10−42GeV (1.31)

where we have used

1 Mpc = 3.08568 × 1024cm = 3.26156 × 106 light years (1.32)

Here, h is the uncertainty on the value for the Hubble constant. Measurements [9] have con-

strained this uncertainty to

h = 0.72 ± 0.08 (1.33)

For reasons of simplicity, we choose h the be equal to 0.7 in the following.
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1.2.3 Distance measures

In order to quantitatively test cosmological models, we need to be able to measure distances

of light sources far away in space and time. Light traveling towards us is always moving on a

geodesic of the space-time manifold in the direction χ, i.e. it satisfies

ds2 = −c2dt2 + a2(t)dχ2 = 0 ⇔ dχ =
c

a(t)
dt (1.34)

where we recovered c for clarity.

Light emitted at time t = t1 with χ = χ1 and a redshift of z will reach an observer at t = t0 with

χ = 0 and respective z = 0. The comoving distance between source and observer is then given

by the integration of Eq. (1.34) back in time

dc ≡

∫ χ1

0
dχ = −

∫ t1

t0

c
a(t)

dt (1.35)

Since we measure the time "distances" of the observed light source by its redshift, it is conve-

nient to change our integration variable with Eq. (1.26)

dt = −
dz

H(z)(1 + z)
(1.36)

Expressing our integral (1.35) through equation (1.36) yields

dc =
c

a0H0

∫ z

0

dz′

E(z′)
(1.37)

which can be shown to satisfy Hubble’s law if expanded around z = 0 (See Ref. [9]).

The flux F = L0/S of a point source with observed luminosity L0 in a flat Universe (K = 0)

is expected to scale proportionally to the inverse of the surface of a sphere S = 4π(a0dc)2:

F =
L0

4π(a0dc)2 (1.38)

Due to the large distances in cosmology, relativistic effects gain weight when estimating the

distance of objects from their apparent luminosity. This means the luminosity L0 observed at
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χ = 0 and z = 0 is different from the absolute luminosity LS of the source emitted at comoving

distance χ with redshift z. We therefore define the commonly used luminosity distance

d2
L ≡

LS

4πF
(1.39)

Combining Eqs. (1.38) and (1.39) yields

d2
L = (a0dc)2 LS

L0
(1.40)

The luminosity of a light source is defined by the energy emitted in a given time interval

L = ∆E/∆t. The energy of photons is inversely proportional to their wavelength λ, hence

∆E0/∆ES = λS /λ0 with ∆E0 the energy of the observed photon at ∆t0 and ∆ES the energy

of the photon at emission at ∆tS . Together with Eq. (1.26) this gives λS /λ0 = (1 + z). The

constancy c = λ/∆t implies that ∆t0/∆tS = λ0/λS = (1 + z). Comparing the absolute and

observed luminosities LS /L0, we obtain

Ls

L0
=

∆ES

∆E0

∆t0

∆tS
= (1 + z)2 (1.41)

This reduces Eq. (1.39) to

dL = a0dc(1 + z) =
c(1 + z)

H0

∫ z

0

dz′

E(z′)
(1.42)

Based on the astronomical magnitude system, we define the distance modulus µ as the differ-

ence between the apparent magnitude m and absolute magnitude M. The modulus is related

to our luminosity distance measured in parsec by

µ = m − M = log10(dL) − 5 (1.43)

1.2.4 Supernovae Type Ia

The most frequent form of supernovae throughout the Universe are those of type Ia. The com-

mon picture is that the progenitor system of such a supernova type Ia consists of at least one

massive (≈ 1 solar mass M�) carbon-oxygen white dwarf [11]. White dwarfs are stabilized by
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the Fermi pressure of a degenerate electronic gas. This pressure can hold gravity only up the

Chandrasekhar limit of about 1.4M� [12]. If this limit gets exceeded (by mass transfer from

a red giant or by two binary white dwarfs merging) a thermonuclear runaway is triggered,

which eventually causes the white dwarf to explode and is responsible for the extraordinary

brightness of type Ia supernovae.

To infer the luminosity distance of supernovae it is necessary to assign absolute luminosities.

Fortunately, supernovae of type Ia are "standard candles", i.e. there exists an empirical re-

lation between the width of the observable light curve and the peak luminosity. This allows

calibration to an absolute luminosity. Measuring the redshift of their spectra, it is possible to

reconstruct the luminosity distance as a function of redshift. For a matter dominated Universe

(Ω0
M = 1,Ω0

K = 0,ΩΛ = 0, also called Einstein-de Sitter limit [13]), the expansion function

(1.25) can be written as

E(z) =

√
Ω0

M(1 + z)3 (1.44)

The luminosity distance (1.42) for this expansion function can be integrated analytically

⇒ dL(z) =
c(1 + z)

H0

∫ z

0

dz′√
Ω0

M(1 + z′)3
=

c(1 + z)
H0

2 − 2√
Ω0

M

√
1 + z

 (1.45)

Riess and Perlmutter et al. gathered data of over 500 type Ia supernovae, provided by the

Supernova cosmology project [14]. Surprisingly they do not match a Universe filled with

only baryonic and dark matter (See Fig. 1.1). Together with measurements of the CMB and

the BAO, it is now a well-established fact that the change of the Hubble parameter H at low

redshift is caused by acceleration of the expansion rate of our cosmos [9]. This acceleration is

undoubtedly unsuspected and ordinary matter is obviously not capable of explaining it. This

implies, that our Universe is filled with an, as of yet, unknown, non-luminous energy density,

causing the late time accelerated expansion of the cosmos, hereinafter referred to as "dark

energy"
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Figure 1.1 Distance modulus against redshift for SN Ia data and their corresponding
1σ-error. On top, the Einstein-de Sitter limit solution to the Friedmann equations for
a Universe filled with only dark and baryonic matter ΩM = 1,ΩK = 0 and ΩΛ = 0.

1.3 Dark Energy

The data of the supernovae type Ia suggests, that the speed of expansion is growing, i.e. there

has to be a force in the Universe, counteracting the attractive gravitation and hence causing

this accelerated expansion on large scales. Einstein’s general theory of relativity provides

a mechanism for which gravity can become repulsive, namely if the pressure of a fluid is

sufficiently negative

P < −
ρ

3
(1.46)

This condition is equivalent to an equation of state parameter of

w < −
1
3

(1.47)

Since is not yet clear if the equation of state parameter wDE of dark energy is constant in time

or dynamical, we have to, again, consider the adiabatic equation

ρ̇DE + 3H(ρDE + PDE) = 0 (1.48)
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Now assuming a time dependence of wDE, integrating equation (1.48) with respect to the

redshift z takes the following form

ρDE = ρ0
DE exp

[∫ z

0

3 (1 + wDE(z′))
1 + z′

dz′
]

(1.49)

where we used the transformation Eq. (1.36) again.

1.3.1 ΛCDM

The most simple candidate for dark energy is Einstein’s cosmological constant Λ. It would be

sufficient for most of the astronomical cases if Λ is equal to zero, but, as Lovelock’s theorem

[8] proofs, any tensor T , which depends on the metric g and only its first and second deriva-

tives, must be a linear combination of the Einstein and metric tensor. Thus, the Einstein tensor

must be of the form

G = κT − Λg (1.50)

with κ = 8πG in the Newtonian limit and the energy-momentum tensor T .

Under the assumption that Λ’s energy density remains constant over the expansion of the

background, the corresponding equation of state parameter for Λ simply reads

w = −1 (1.51)

so the cosmological constant fulfills the condition (1.47), as its w results in a sufficiently

negative pressure and hence an accelerated expansion of space at late times.

To match experimental observation, like the SN Ia data [14], the CMB or the BAO [10], the

cosmological constant is estimated to have a value of

Λ ≈ H2
0 = (2.1332h × 10−42GeV)2 (1.52)

Its energy density parameter today is estimated to be approximately Ω0
Λ
≈ 0.7, i.e. 70% of

the energy content of the Universe. The missing 30% are divided into cold baryonic and dark

matter, denoted as ΩM. "Cold" means that the particles momenta are negligible, compared to
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Figure 1.2 SN Ia data with ΛCDM-Universe in blue and a Universe filled with only
cold dark matter in dashed orange

their rest mass, so the expectation value for the statistical pressure of such gases is zero. This

yields w = 1/3 for both, ordinary and dark matter.

Assuming further the curvature and the electromagnetic radiation radiation density of the Uni-

verse to vanish (Ω0
K ≈ 0, Ω0

γ ≈ 10−5, as shown observationally [10]), the Hubble function

(1.24) can be written as

H2(z) = H2
0

[
Ω0

M(1 + z)3 + Ω0
Λ

]
(1.53)

Integrating Eq. (1.42) for this H(z) numerically yields the luminosity distance and redshift

relationship for this type of Universe

dL(z) =
c(1 + z)

H0

∫ z

0

dz′√
Ω0

M(1 + z′)3 + Ω0
Λ

(1.54)

This approach is called the "Lambda Cold Dark Matter" (ΛCDM) model and is referred to as

the standard model of physical cosmology.

Despite its success, Λ itself is rather questionable, since it requires extended fine tuning to
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explain the accelerated expansion of our Universe today and only arguments based on the

anthropic principle support its present value [15]. This issue is called the fine tuning problem

of the cosmological constant. The true nature of Λ remains unclear. Attempts to explain the

energy density of the cosmological constant in terms of quantum field vacuum fluctuations

results in the awkwardly big discrepancy of ∼ 10120 (See Ref. [9]).

Precise fine tuning is also necessary to explain, that Ω0
M and Ω0

Λ
seem to be of the same order

of magnitude for no apparent reason. Another way to formulate this is the question of why

today? This is the so-called coincidence problem.

The inability to explain its nature and its present value disfavors the cosmological constant Λ

as an explanation for dark energy. If Λ needs to vanish, we should find an alternative model.

1.3.2 Quintessence

A canonical scalar field φ with a self interacting potential V(φ) responsible for the late-

time cosmic acceleration is called "Quintessence". Many scalar fields are present in par-

ticle physics, as well as in types of string theory and supergravity. The action for such a

quintessence field φ reads

S [φ] =

∫
d4x
√
−g

[
1

2κ2 R +Lφ

]
+ S M (1.55)

where κ2 = 8πG, R is the Ricci scalar, S M is the matter action and g denotes the determinant

of the metric g ≡ det gµν [9]. The Lagrange density of the quintessence field is given by

Lφ =
1
2

gµν∇µφ∇νφ − V(φ) (1.56)

with a kinetic term on the left hand side and the potential term on the right hand side. Its

energy-momentum tensor can be derived from the variational principle and is given by

T (φ)
µν = −

2
√
−g

δ(
√
−gLφ)
δgµν

= ∇µφ∇νφ − gµνLφ = (ρφ + Pφ)uµuν − Pφgµν (1.57)

Since ~∇φ = 0, due to homogeneity, the energy-momentum tensor (1.57) can be evaluated in

comoving coordinates. We obtain the following simple expression for the energy-density ρφ
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and pressure Pφ of the field

ρφ = −T 0(φ)
0 =

1
2
φ̇2 + V(φ) (1.58)

Pφ =
1
3

T i(φ)
i =

1
2
φ̇2 − V(φ) (1.59)

Henceforth, its equation of state parameter is given by

wφ ≡
Pφ

ρφ
=

1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
(1.60)

The quintessence equation of state parameter is able to become negative if the kinetic energy

of the field φ̇2/2 is negligible compared to its potential value V(φ).

1
2
φ̇2 � V(φ) (1.61)

This also means that our quintessence equation of state parameter wφ eventually changes over

time to get sufficiently negative, triggering the late cosmic acceleration we observe today. This

dynamic property is beneficial for a reliable model of dark energy.

The Hubble function and its time derivative for a Universe with quintessence and cold dark

matter is given by

H2 =
8πG

3

(
1
2
φ̇2 + V(φ) + ρM

)
(1.62)

Ḣ = −4πG(φ̇2 + ρM + PM) (1.63)

Further, in the FLRW-geometry (1.7), Eq. (1.12) for energy-conservation can be brought to

the form of a Klein-Gordon equation

φ̈ + 3Hφ̇ +
dV(φ)

dφ
= 0 (1.64)

This is the equation of motion of our scalar field. The fate of the Universe is governed by

the form of the quintessence interaction potential V(φ). As the field "rolls down" the potential

slowly, it will continue to gain kinetic energy and thus entering a region in which its energy
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density starts to dominate the expansion of the cosmos. To achieve this desired accelerated

expansion only at late times, it is convenient to define the so-called slow roll parameters

εS ≡
1

2κ2

(
V,φ

V

)2

and ηS ≡
V,φφ

κ2V
(1.65)

where V,φ ≡ dV/dφ. Both, εS and ηS , must be smaller than one for the potential to be shallow

enough to realize the acceleration at late times.

There are several classes of possible potentials possessing the desired properties, roughly di-

vided into "freezing" and "thawing" models [9].

• Freezing models: Potentials for which wφ starts non-negative and "freezes" at late times

to −1 due to gain in kinetic energy. Examples would be (M2 = M2
p/16π)

– V(φ) = M4+nφ−n (n > 0)

– V(φ) = M4+nφ−n exp(αφ2/m2
pl)

Such potentials appear for example in the fermion condensate model as a dynamical

supersymmetry breaking or in the framework of supergravity.

• Thawing models: Potentials for which wφ is initially at −1 and starts to become less, so

the equation of state starts "thawing". Corresponding potentials are

– V(φ) = V0 + M4−nφn (n > 0)

– V(φ) = M4 cos2(φ/ f )

The first potential is similiar to the one of chaotic inflation, the second one appears as a

potential of the Pseudo-Nambu-Goldstone Boson.

The "classical" approach of constructing a suitable potential for the quintessence field is to

parametrize wφ analytically and to integrate Eqs. (1.8) and (1.63) (See Ref. [9]). This inverse

problem forces to assume a form of wφ, so the reconstructed potential is therefore only ef-

fective. Our approach is to directly guess the potential by means of machine learning and

calculate the equation of state parameter numerically out of the free-form laws.
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1.4 Evolutionary Programming

Developing automated problem solvers is one of the central issues of mathematics and com-

puter science. As the title already suggests, evolutionary programming facilitates the natural

selection process of evolution to maximize a certain fitness. This idea is not surprising, since

the success of evolution in Nature is evident. The real challenge though is to formulate her

principles executable for a computer. Alan Turing already suggested evolving computer pro-

grams in the 1950s [16] but the first working evolutionary algorithms have been published in

the 60s by Bremermann [?].

Darwin pointed out in his theory of evolution [17], that it is natural selection that plays a

central role in explaining the rich biological diversity and the adaptation of all life to their

individual habitat. Given a set of individuals, called population, with a certain growth rate, it

is necessary to limit this otherwise exponential growth by selection. Those individuals which

compete for a given resource best, i.e. which fit to the environmental conditions best, will be

favored by natural selection. This is also known as "survival of the fittest".

1.4.1 Genetic Algorithms

The microscopic view of natural evolution is offered by the discipline of molecular genetics.

Its fundamental observation is that an individuals genotype, i.e. its internal structure, encodes

its phenotype, i.e. its external "visible" structure. Genes are functional units of inheritance

encoding phenotypic characteristics. These genes can be altered by spontaneous mutation or

by sexual reproduction. Through these variations, new combination of traits occur and get

evaluated. The best ones survive and reproduce and so the evolution progresses.

Every genetic algorithm therefore needs the following attributes:

• Representation: In order for the algorithm to evaluate the phenotype of the individuals,

their genes get a representation, e.g. as bits or syntax-trees (See Fig. 1.4).
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Figure 1.3 General scheme of an evolutionary algorithm as a flowchart. Adapted
from [?]

• Fitness function: Evaluating the genes of individuals and assigns a fitness to solve a

given problem, e.g. minimizing or optimizing a certain error-metric.

• Population: A set of initially random generated individuals of size n

• Parent selection mechanism: An algorithm selecting the best individuals to reproduce

from the population. For example reproduction by copy such as bacteria or monoga-

mous crossover of two parents like in mammals.

• Variation operators, recombination and mutation: Randomly replacing bits or tree-

nodes with a certain probability and thus creating diversity within the population (See

Fig. 1.5)

• Survivor selection mechanism (replacement): Creating a new child-population

1.4.2 Symbolic Regression

Finding mathematical models for a given set of data is loosely speaking the key challenge in

all of science. Traditionally, it is the task of the scientist to decide which function may predict



20 1.4. EVOLUTIONARY PROGRAMMING

data the best. But even experts tend to have bias towards data when choosing functions to fit.

Unlike traditional linear and non-linear regression methods, the aim of symbolic regression is

not the sole parameter regression of predefined functions but also to find the whole symbolic

mathematical representation of the underlying model.

Considering the one-dimensional case, the problem of symbolic regression is therefore defined

by a number of pairs (xi, yi) ∈ R × R, where i = 1, ..., n, and the task is to find a function

f : R → R, such that f (xi) = yi for all i = 1, ..., n. In order to define a genetic algorithm for

this problem we need to find a suitable representation. It is common to express the individuals

in symbolic regression as syntax trees [18].

Initial expressions are randomly generated by combining mathematical building blocks like

algebraic operators +,−,×,÷ or analytical functions exp, sin, cos, etc. We also need at least

one variable x and some constants. To be able to evaluate the trees, it is further necessary to

define the arity of the operator, e.g. exp is unary, + is binary, which is trivially self-evident.

For the variation of individuals, symbolic regression offers huge variety of algorithms [18].

However, it suffices to stick to standard operations of genetic programming. The generational

algorithm used in this thesis is the described in [19]. It involves crossover and mutation

operations, as well as a 1 : 1 replacement ratio.

For parent selection, m individuals are randomly chosen to compete against each other in a

tournament. Measured by their fitness, the best of those m individuals is allowed to mate

with its consecutive tournament winner. The so-called one-point crossover is applied with a

certain (usually high) probability Pmate: Two random nodes of the same arity in both parents

get selected and combined, the other parts of the parental trees get discarded (See Fig. 1.4).

After the generation of new individuals through crossover, the offspring population will be

mutated with a (usually small) probability Pmutate: A randomly selected node is selected and

replaced by a randomly generated sub-tree (See Fig. 1.5). The fitness of each individual is

usually given as some form of curve fitting error. In most cases a simple χ2-test is enough to

achieve adequate results.
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Figure 1.4 Example of subtree crossover. Note that the trees on the left are actually
copies of the parents. So, their genetic material can freely be used without altering
the original individuals. Adapted from [?]

Figure 1.5 Example of one-point sub-tree mutation. A randomly selected tree-node
gets replaced by a randomly generated sub-tree. Adapted from [?]
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1.5 Bayesian Inference

Bayesian methods have become increasingly popular among cosmologists to infer parameters

of models and select these models based on their observational evidence [20]. Not only did

the cosmological models get more complex, but also the statistics evaluating those models

needed to advance. The classical, so-called frequentist, approach of statistics involves many

difficulties, which the Bayesian approach tries to avoid.

The Bayesian viewpoint is based on the tenet that "probability is a measure of the degree of be-

lief about a proposition" [20]. This definition of probability applies to any event, also to those

occurring only once (e.g. "what is the probability that it will rain tomorrow?"). "Randomness"

is therefore only a consequence of our lack of information about the exact conditions of the

system. Central for Bayesian inference is Bayes Theorem. The introduction here is only basic

and we refer to more sophisticated literature [21, 22].

1.5.1 Bayes’ Theorem

Bayes’ theorem follows as a simple consequence of the Kolmogorov axioms of probability

theory. For two random events A and B, the conditional probability of A, given the occurrence

of B, is given by

P(A | B) =
P(A ∩ B)

P(B)
(1.66)

where P(A ∩ B) is the joint probability of both A and B being true. Bayes’ theorem basically

states the symmetry of P(A ∩ B) = P(B ∩ A), thus

P(A | B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B | A)P(A) (1.67)

⇔ P(A | B) =
P(B | A)P(A)

P(B)
(1.68)

We can expand Bayes’ Theorem (1.68), giving

P(H | D,M) =
P(D | H,M)P(H | M)

P(D | M)
(1.69)
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All probabilities are now further conditioned by a model M while the hypothesis H is ex-

pressed by the values of the parameters that the model M may have. The left-hand side

P(H | D,M) is called the posterior probability of the hypothesis taking the data D into ac-

count. It is proportional to the sampling distribution of the data P(D | H,M) assuming the

hypothesis is true, times the prior probability for the hypothesis P(H | M). The prior repre-

sents our state of knowledge before seeing the data and takes up an important role in Bayesian

inference, discussed in more detail in Ref. [20]. As a function of the hypothesis for fixed data,

the sampling distribution is called likelihood function, where we will employ the notation

L(H) ≡ p(D | H,M) (1.70)

As a function of H, the likelihood is not a probability distribution. The normalisation constant

on the right-hand-side in the denominator is the marginal likelihood or Bayesian evidence,

summing up all possible hypotheses

P(D | M) ≡
∑

H

P(D | H,M)P(H | M) (1.71)

This is interpreted as the likelihood for the data D under the model M, specified by all possible

sets of parameters characterising the model.

1.5.2 Model selection

Assuming that the parameter space of the model M is continuous, i.e. the parameter θ varies

within a parameter space ΩM, the sum (1.71) turns into an integral over the parameter space,

hence the evidence turns into

P(D | M) ≡
∫

ΩM

P(D | θ,M)P(θ | M)dθ (1.72)

When comparing two models,M0 versusM1, one is interested in the posterior odds, given by

P(M0 | D)
P(M1 | D)

= B01
P(M0)
P(M1)

(1.73)
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B01 Strength of evidence

1 to 3 Barely worth mentioning

3 to 20 Positive

20 to 150 Strong

> 150 Very strong

Table 1.1 Empirical scale for evaluation the strength of evidence when comparing
two models (so-called "Jeffreys’ scale").

with the Bayes factor B01 being the ratio of the models’ evidences:

B01 ≡
p(D | M0)
p(D | M1)

(1.74)

The Bayes factor is our relevant quantity to choose whetherM0 orM1 is more strongly sup-

ported by the data, independent of the precise value of the model parameters.

Usually Bayes factors are interpreted against the empirically calibrated Jeffreys’ scale [20]

for the strength of evidence. This does not replace parameter inference, which is performed

within each of the models separately.

1.5.3 Parameter Estimation

Let the probability distribution of data points yi at xi, when expected yθ(xi) with variance σ2
i ,

be Gaussian distributed

P(yi | yθ(xi), σi) =
1√

2πσ2
i

exp
(
−

(yi − yθ(xi))2

2σ2
i

)
(1.75)

The classical approach for parameter estimation is the maximum likelihood method. Those

parameters θ ∈ ΩM of our model yθ(xi) which maximize the joint likelihood function are ought

to be the "true" parameters

θmax = arg max
θ∈ΩM
L({yi} | θ) (1.76)
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Assuming statistical independence, we can express the likelihood function of our set of data

points {yi} as the product of the individual univariante probability distributions (1.75)

L({yi}) =

n∏
i=1

P(yi) =

n∏
i=1

1√
2πσ2

i

exp
(
−

(yi − yθ(xi))2

2σ2
i

)
(1.77)

Turning the product over all data points in Eq. (1.77) into a sum in the exponential, we re-

covered the χ2 dependency of the likelihood function, i.e. maximizing L is equivalent to

minimizing χ2

L ∝ exp
(
−
χ2

2

)
, with χ2 =

n∑
i=1

(yi − yθ(xi))2

σ2
i

(1.78)

1.5.4 Markov Chain Monte Carlo

In general it turns out that evaluating the marginal likelihood integral (1.72) is rather difficult

and numerically challenging, due to the multi-dimensional integration over the whole param-

eter space. The common way to tackle this problem is to sample the posterior using Markov

Chain Monte Carlo (MCMC) methods [21].

A Markov chain is a stochastic process with a countable space Ω = {ω1, ω2, ..., ωn+1} of results

and the Markov property

P(Xn+1 = ωn+1 | Xn = ωn, ..., X1 = ωi) = P(Xn+1 = ωn+1 | Xn = ωn) (1.79)

A Markov chain Monte Carlo algorithm defines a sequence, a "chain", of random variables

{X1, X2, ..., Xn}, so that the probability of each step of the chain only depends on previous re-

sult.

A common example for a scheme achieving this desired property is the Metropolis-Hastings

algorithm. Suppose P(X) is the probability distribution we want to sample a parameter vector

X from by such a Markov chain. Let further G(Xn+1 | Xn) be the conditional probability dis-

tribution for taking the step from Xn+1 to Xn, the so-called proposal distribution. The Markov

property (1.79) is achieved by choosing the transition probabilities

Pi j = min
(
1,

P(Xn+1)
P(Xn)

G(Xn+1 | Xn)
G(Xn | Xn+1)

)
(1.80)
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It says that the step from Xn to Xn+1 is taken with certainty if P(Xn+1) is larger at the arrival

point than it was at the starting point, but with a lower probability otherwise. How wide the

steps are taken and how far they can reach is controlled by the proposal distribution, usually

taken to be flat between reasonable parameter limits or multivariate Gaussians [21].

The start of the Markov chain will be some randomly chosen position in parameter space.

However, the final outcome must not depend any more on this starting point. The chain can

be shown to converge to the desired distribution after a certain burn-in phase. This part should

be cut off for the resulting chain to be independent of the initial starting point and to hence

achieve better results.

Once a Markov chain has been constructed, obtaining Monte Carlo estimates of expectations

for any function of the parameters becomes a trivial task. The integral for the Bayesian ev-

idence Eq. (1.72) can be approximated by a sum over all parameter samples obtained in the

Markov chain

P(D | M) =

∫
ΩM

P(D | X′,M)P(X′ | M)dX′ ≈
1
N

N∑
i=1

P(D | Xi,M) (1.81)

This follows because the samples Xi are generated from the posterior by construction. Equality

is given in the limit of large sample sizes N.



Chapter Two

IMPLEMENTATION AND RESULTS

The implementation of the evolutionary algorithm took place in two steps. The goal of the first

part is to construct a symbolic regression algorithm able to find the right potential terms of

classical Lagrangian systems with simulated experimental data. The second part is dedicated

to finding suitable quintessence self interaction potentials with the previously implemented

symbolic regression algorithm, constrained by the SNIa data and measurements of parameter

values from the CMB/BAO.

2.1 Preparations

In preparation it is necessary to develop an intuition for symbolic regression and the param-

eters governing the evolution of the individual functions. As a light-weight framework for

evolutionary algorithms we employ the python library DEAP [23]. The highly instructive

documentation of DEAP offers a simple symbolic regression example, which is the starting

point of the following constructions. DEAP comes with an excellent toolbox and a variety of

simple evolutionary algorithms. They welcome the implementation of self-written methods,

schemes and especially fitness functions. This is a great advantage over other EA frameworks.

In the scientific community, DEAP is well-known not only for its versatility in evolutionary

programming, but also for its remarkable parallelization scheme [24]. Since the large amount

of individuals in a given population has to be calculated separately and independently, the

calculation time can be divided by the number of available CPU’s. This makes evolutionary

programming viable on large computing clusters. Nevertheless, the handling of variables and

memory in real multi-processing applications is a difficult task and should be done with care.

27
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Parameter Description Typical value

n Initial population size 101 < n < 105

m Tournament size 2 < m < 10

g Number of generations 5 < g < 30

Pmate Crossover probability ∼ 75%

PMutate Mutation probability ∼ 25%

Table 2.1 Empirical boundaries for the symbolic regression parameters.

2.2 Symbolic Regression

The ability of symbolic regression to find simple function terms [18], dynamical and chaotic

system’s differential equations [25], and even physical laws [5] has been demonstrated numer-

ous times. Despite the rich literature for symbolic regression, the evolutionary dynamics of

such a genetic algorithm can be counter intuitive. This issue can only be solved by countless

rounds of trial and error. In the end, the successful termination of the algorithm depends sig-

nificantly on the type of problem. Nevertheless, for the sake of orientation, heuristic bounds

and fixed values for the evolutionary parameters are given in Table 2.1. The upper limits for

the parameters n,m and g are mainly restricted by the computing resources and termination

time. This can be very problematic in more challenging situations, since a sufficiently dense

population is necessary to reach the needed diversity. The more individuals there are, the

higher the chances that we can find the correct expression, which solves the symbolic regres-

sion problem.

Concerning the probabilities of mating and mutation, different views are found throughout the

literature. Most authors agree, that the crossover probability of mating individuals should be

high enough to achieve optimization, but not too high for the set to become overpopulated by

a semi-good individual. Mutation, some authors argue, is not relevant for evolution at all [?].

In our experiments, however, we found that, in order to prevent the algorithm to get stuck in a
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local minimum, it is necessary to allow a small mutation probability.

As a representation for the functions we decided to use the python library Sympy [26]. Sympy

is advanced symbolic computer algebra system, able to perform all sorts of algebraic opera-

tions on symbolic mathematical expressions. This involves solving equations, simplification

as well as symbolic differentiation and integration. If needed, the expression can be returned

as an executable python function and integrated numerically.

Another important aspect of symbolic regression is the protection of individuals and the fit-

ness function. The algorithm does not know per se whether an expression makes "sense" or

not. Non-sense expressions, e.g. f (x) = (x − x)/(x − x) = 0/0 or f (x) = log(x − x), are math-

ematically not defined and return errors in Python and thus abort the algorithm. Hence, many

exceptions have to be formulated for symbolic regression to not produce faulty individuals. In

such a case, the defective individuals get excluded from the population by disfavoring them in

the selection process with the worst fitness (±∞ depending on the error metric).

2.3 Classical Lagrangian Potentials

As already mentioned before, the primary goal of this section is to construct a working algo-

rithm able to find the right classical Lagrangian potential that optimally fits simulated data.

This means that we first need to understand how the equations of motion of physical objects

follow from a given potential.

The action S for any given mechanical system is defined by the time integral of the Lagrangian

L, which is given by the difference of kinetic energy T and potential energy V

S =

∫
Ldt with L = T − V (2.1)

From Hamilton’s principle (δS = 0), we can derive the Euler-Lagrange equations

d
dt
∂L
∂q̇
−
∂L
∂q

= 0 (2.2)
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with the generalized coordinates q and their time derivative q̇.

A very simple and well-studied Lagrangian mechanical system is the classical pendulum. We

place the suspension of the pendulum in the coordinate origin. Without loss of generality, we

can assume the pendulum to swing in the x-y-plane, hence the position and velocity vector for

its mass m at the end of a mass-less connection of length l are constrained to move on a circle.

Therefore, they can be parametrized by the pendulum’s angle ϕ

r = l (sinϕ, cosϕ, 0)T
⇒ ṙ = lϕ̇(cosϕ,− sinϕ, 0) (2.3)

Note that the spatial position of the pendulum is now described by a single parameter, our

generalized coordinate. This reduces our system to a one dimensional problem.

The pendulum is placed in a gravitational field g = gey pointing in the y direction of our

reference frame. Its potential is therefore given by

V(r) = mgey · r = mgl cosϕ (2.4)

We can now construct the Lagrangian for our pendulum as

L =
1
2

mṙ2 − V(r) =
1
2

ml2ϕ̇2 + mgl cosϕ (2.5)

Plugging this Lagrangian into the Euler-Lagrange Eq. (2.2) yields

d
dt
∂L
∂ϕ̇
−
∂L
∂ϕ

= 0 ⇒
d
dt

(
ml2ϕ̇

)
+ mgl sinϕ = 0 (2.6)

⇒ ϕ̈ = −
g
l

sinϕ (2.7)

This is the equation of motion of our classical pendulum, a second-order non-linear differential

equation, which implies that it can be expressed by two first-order differential equations. We

introduce the angular velocity ω, and so we obtain

ϕ̇ = ω (2.8)

ω̇ = −
g
l

sinϕ (2.9)
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After choosing suitable initial conditions for ϕ and ω at time t = 0, this system of first-order

differential equations can be integrated numerically. We employ the Solve_ivp ODE solver

by Scipy [27]. This solver is based on a explicit Runge-Kutta method with 4th order in error

accuracy and 5th order step-size.

Having this analytically solved system and its numerical integration at hand, we can generate

an artificial data set for the pendulum’s angle ϕ0
i and its corresponding velocity ω0

i at time

steps ti. To emulate the natural uncertainty of measurements, all data points are salted with

additional Gaussian noise with mean µ = 0 and standard deviation σ

ϕi = ϕ0
i +N(0, σ) (2.10)

For our symbolic regression algorithm to be able to fit the data with potential terms as indi-

viduals populating the evolutionary dynamics, it is also necessary to estimate suitable initial

conditions. In this case, the values for ϕ0 and ω0 are treated as ordinary fit parameters, which

can be estimated by MCMCs and the maximum likelihood method (see section 1.5)

As soon as the Markov chain exists, assigning a fitness to each individual is done by calculat-

ing their Bayesian evidence (1.81). Each potential can thus be assigned its own inherent fitness

value deciding which individual ought to survive. Estimating the initial values for differential

equations is a time-expensive task, because, for every single step, the whole procedure of nu-

merically solving the ODE can easily take seconds to finish. However, the simple case of a

classical pendulum can be treated efficiently and its symbolic potential term is quickly found.

The pipeline of the algorithm can be seen in Fig. 2.1 as a flowchart.

We now explore the ability of parameter estimation with more intricate mechanics. We

choose a system of two coupled pendula of same length l and following Lagrangian

L = T − V =
1
2

m(ϕ̇2
1 + ϕ̇2

2) −
mg
2l
ϕ2

1 −
mg
2l
ϕ2

2 −
1
2

k(ϕ2 − ϕ1)2 (2.11)

where m1 and m2 are the masses of the pendula. k is the coupling-constant between the two

pendula. The equations of motion for this system can be derived with the Euler-Lagrange
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Figure 2.1 Flowchart of the fitness function for classical Lagrangian potentials. On
the top is the main fitness function. On the bottom one can see a schematic overview
of the MCMC algorithm.

Eq. (2.2) again and are given by

mϕ̈1 = −
mg
l
ϕ1 + k(ϕ2 − ϕ1) (2.12)

mϕ̈2 = −
mg
l
ϕ2 − k(ϕ2 − ϕ1) (2.13)

We estimate the proper initial conditions for the equations of motion by Bayesian Inference.

We therefore treat the initial conditions of the differential equations as fit parameters and esti-

mate them by a MCMC. The samples will be distributed according to the posterior distribution

of the model given the dataset. Usually a flat prior (Jeffreys prior) in a given limit for the pa-

rameters is the favored choice for the prior distribution [22]. This ensures, a priori, all values

in the given limits to be equal probable. The maximum of the posterior distribution will there-

fore be the best fit-parameter, also maximizing the likelihood.

Finding the right initial conditions works surprisingly well for dynamical systems such as a

coupled pendulum (See Fig. 2.2). Even for very noisy and low sampled data points, it is possi-

ble to infer the initial conditions for the equations of motion of a simple classical mechanical

system. After a certain burn-in phase (See sec. 1.5.4) the Markov chains converges around the

posterior maximum (See Fig. 2.3) and the sampled initial conditions most supported by the

data can be inferred easily. Exploitation of multiprocessing is unfortunately not possible for

MCMCs, due to the Markov property (1.79). The handling of memory for MCMC tasks over
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Figure 2.2 Angle ϕ of a coupled pendulum with m1 = m2 = l = 1. The truth is given
as noisy simulated points on a evenly distributed grid. The black line is the MCMC
sample, i.e. initial conditions, with maximum likelihood. In grey is the statistical
mean and in orange the 1σ area of uncertainty of the MCMC samples.

parallel processes is in general even slower than conventional serial execution. This limitation

tightens with model complexity, which makes initial condition estimation by MCMC in sym-

bolic regression only possible for simple examples, such as the single and coupled pendulum.

2.4 Quintessence Potentials

Finding the correct quintessence interaction potential for a scalar field to match the distance

and redshift relationship is undoubtedly a more difficult task than finding simple classical

potentials. It involves solving a system of three differential equations, multiple interpolations

and integration. We will start by finding equations of motion for individual quintessence

potentials.
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Figure 2.3 Monte Carlo Markov Chain for the coupled pendulum. On the top one
can see the values of the samples against the number of steps of the chain. All walk-
ers of the chain converged around a maximum value and thus sample the posterior
sufficiently. On the bottom one can see the covariances of the samples as histograms.
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2.4.1 Equations of motion

The SNIa data will be the measure for the evidence of our individual models. This prompts

us to express our fields equation of motion (1.64) and the Friedmann Eqs. (1.62) and (1.63) in

terms of redshift z instead of the time t. We will again make use of the coordinate transforma-

tion

dt = −
dz

H(z)(1 + z)
(2.14)

Expressing the time-derivative in the second Friedmann equation for a Universe with Quintessence

and cold dark matter gives the following z-depended acceleration equation

− H(1 + z)
dH
dz

= −4πG
(dφ

dz

)2

H2(1 + z)2 + ρM

 (2.15)

For the numerical implementation, we employ the expansion function E = H/H0, since this is

the relevant quantity for integrating the luminosity distance (1.42) of our model. The physical

scaling with natural constants is done at the end. Replacing H by E in Eq. (2.15) and isolating

its z-derivative hence yields

⇒
dE(z)

dz
= 4πGE(z)(1 + z)

(
dφ
dz

)2

+
3Ω0

M

2E(z)
(1 + z)2 (2.16)

where we used ρM(z)/ρcrit = Ω0
M(1 + z)3 from Eqs. (1.16) and (1.19).

In the next step, we also transform the equation of motion (1.64) for the quintessence field.

We start by changing the time dependence of φ̈ to redshift z, i.e. we need to apply the trans-

formation (2.14) twice under consideration of the chain rule

φ̈ =
d
dt

(
d
dt
φ

)
= −H(1 + z)

d
dz

(
−H(1 + z)

d
dz
φ

)
(2.17)

= −H(1 + z)
(
−

dH
dz

(1 + z)
dφ
dz
− H

dφ
dz
− H(1 + z)

d2φ

dz2

)
(2.18)

= H(1 + z)2 dH
dz

dφ
dz

+ H2(1 + z)
dφ
dz

+ H2(1 + z)2 d2φ

dz2 (2.19)

The friction and the force term in the equations of motion (1.64) simply transform to

−3H
dφ
dt
−

dV(φ)
dφ

= 3H2(1 + z)
dφ
dz
−

dV(φ)
dφ

(2.20)
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Combining Eq. (2.19) and Eq. (2.20), we can now isolate φ′′ (using ′ as a short notation for a

z-derivative):

⇒ φ′′ =

(
2

1 + z
−

H′

H

)
φ′ −

dV(φ)
dφ

1
H2(1 + z)2 (2.21)

Defining the "velocity" ψ of the field φ with respect to the redshift z

ψ :=
dφ
dz

, (2.22)

we can now rewrite the second-order differential equation (2.21) into two first-order differen-

tial equations and additionally the background expansion

φ′ = ψ (2.23)

ψ′ =

(
2

1 + z
−

E′(z)
E(z)

)
ψ −

dV(φ)
dφ

1
E2(z)(1 + z)2 (2.24)

E′ = 4πGE(z)(1 + z)ψ2 +
3Ω0

M

2E(z)
(1 + z)2 (2.25)

This system of differential equations can be integrated numerically (analogously to sec. 2.3)

and is the heart of the following algorithm.

As one can see, the shape of the acceleration of φ can take a variety different shapes, depend-

ing on the derivative of the interaction potential V(φ). Constructing the differential equations

for the algorithm involves therefore a symbolic differentiation of the potential which is done

by a Sympy function. This constrains the form of the individual potentials, as they have to be

differentiable at least once, which is already a condition for the slow-roll parameters (1.65).

To protect the algorithm of such individuals, exceptions for non-differentiable potentials are

formulated. As in section 2.3, such faulty individuals get the worst fitness assigned.

2.4.2 Initial Conditions

At this point, we can infer the initial conditions for the equations of motion by MCMC and

maximum likelihood techniques as in section 2.3. Particularly for the procedure presented
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here, this is a very time consuming exercise. Apart from the fact, that automatically choosing

a dependable prior for every individual potential seems impossible, most individuals need up

to 105 steps to get the relevant parts of the posterior distribution sampled by the MCMC al-

gorithm. This involves a couple of seconds in every step to evaluate the posterior and hence,

it can take hours to calculate the initial conditions of just a single individual. Even on a large

cluster, a rich population over many generations may take days and weeks to terminate.

The goal of this thesis is the construction of a working symbolic regression algorithm. There-

fore, we will exploit the simplification of choosing the initial conditions of the equations of

motion by constrains of measurements of Ω0
M and wφ, sufficient to demonstrate the underlying

principles.

To match the measurements of the parameter values today we have to "translate" them into the

initial conditions for φ and ψ. We can transform Eq. (1.60) for the equation of state parameter

of the quintessence field to

w0
φ =

1
2ψ

2
0H2

0 − V(φ0)
1
2ψ

2
0H2

0 + V(φ0)
(2.26)

with φ0 and ψ0 being the field and its velocity values today. For simplicity we will assume

w0
φ = −1 (2.27)

Now, we can find the first initial condition easily, since ψ0 needs to vanish. This follows from

Eq. (2.26) under assumption (2.27):

⇒
1
2
ψ2

0H2
0 − V(φ0) = −

1
2
ψ2

0H2
0 − V(φ) (2.28)

⇔ ψ2
0H2

0 = 0 ⇔ ψ0 = 0 (2.29)

Another constraint is given by the density parameters. Since the sum of all parameters have to

be equal to one by definition (See Eq. (1.21)), we can express Ω0
φ by its corresponding energy

density today

Ω0
M + Ω0

φ = Ω0
M +

1
2ψ

2
0H2

0 + V(φ0)

ρ0
crit

= 1 (2.30)
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To determine the initial condition for φ0 with this relation, we can use the result of ψ0 from

Eq. (2.29). φ0 can be obtained by inverting the potential V

⇒ φ0 = V−1
(
ρ0

crit(1 −Ω0
M) −

1
2
ψ2

0H2
0

)
ψ0=0
= V−1

(
ρ0

crit(1 −Ω0
M)

)
(2.31)

This demands the invertibility of the potential and is thus another constraint on the possible

function candidates.

The simple case of assuming w0
φ = −1 is the "vanilla" version of finding the initial condi-

tions, because for this choice, good fitting solutions are generated at a very low computational

cost. The inversion of the potential can be done symbolically with Sympy. However, the as-

sumption (2.27) only recovers the cosmological constant case, i.e. a constant equation of state

parameter wφ. We can achieve an enhancement in the dynamics of wφ(z) by setting w0
φ slightly

off minus one. This involves solving a non-linear system of equations, namely Eq. (2.26) and

(2.30) simultaneously, but with wφ & −1. This is done by another Scipy module called fsolve,

an advanced Newton-algorithm for finding the roots of non-linear equations. Unfortunately,

achieving convergence of the Newton-algorithm in a given amount of iterations is again gov-

erned by the choice of initial values, and even then it is not guaranteed.

2.4.3 Integration and Interpolation

We want to select our individual potentials based on their likelihood to produce the SNIa data,

given as a set of n distance moduli µ̂ j at redshifts ẑ j, where j = 0, ..., n. For this matter, we

need to calculate µ with Eq. (1.43) for any given individual potential, i.e. it is inevitable to

interpolate both, the inverse expansion function and the resulting integral involved in the com-

putation of the luminosity distance (1.42) and the distance modulus.

Reasons for this complication are predominantly found in the random distribution of the red-

shifts ẑ j of the SNIa data and the implicit z-dependence of the integral in dL. To suppress error

accumulation while integrating numerically, it is essential to take small and even step sizes, i.e.
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the linear space of integration zi is an evenly distributed array with step-size ∆z = (ẑn − ẑn)/N

and N > n. This array does evidently not match with the random SNIa redshifts ẑ j, since i , j

in general.

However, interpolation and numerical integration are cheap operations and can be performed

with nearly arbitrary precision. To implement this, it is sufficient to interpolate our solution

for the expansion function with cubic splines.

Integrating the equations of motion (2.25) with the initial conditions calculated from w0
φ and

Ω0
M returns a set Ei at a given grid of zi with i = 0, ...,N. We will use the same zi as a support

for the first interpolation

1
E(z)

≈ Spline
(
{zi},

1
{Ei}

)
for z ∈ [z0, zN] (2.32)

Note that this function approximates the data points well only within the boundaries given by

zi.

We can now construct a set of integration support points {xk} within [ẑ0, ẑn], such that ẑ0 =

x0 < x1 < ... < xM−1 < xM = ẑn and step-size ∆x = (ẑn − ẑ j)/M, to make use of the Trapezoidal

rule and approximate the integral over the whole redshift region

∫ z

0

dz′

E(z′)
≈

∆x
2

M∑
k=1

[
1

E(xk−1)
+

1
E(xk)

]
(2.33)

The redshift dependency of Eq. (1.42) is in the upper boundary limit, i.e. every single point

z of dL(z) involves implicit integration. We achieve a functional expression of the integral by

another cubic spline interpolation on the previously generated support points xk

Integral(z) ≈ Spline
(
{xk},

∫ {xk}

0

dz′

E(z′)

)
for z ∈ [ẑ0, ẑn] (2.34)

This finally yields the function for calculating the luminosity distance

dL(z) =
c(1 + z)

H0
Integral(z) (2.35)
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Figure 2.4 Flowchart of the pipeline to calculate the distance modulus µ from a given
individual potential. In the middle is the relevant part for the fitness, on the right
the initial conditions for a given potential get calculated and on the left the inverse
integral of the expansion function is interpolated

Note that here the natural constants are reintroduced, so dL is scaled physically again. As a

last step we generate the set of distance moduli with our given set of SNIa redshifts ẑ j

µ j = µ(ẑ j) = 5 log10

[
dL(ẑ j)

]
+ 5 (2.36)

These µ j, generated from our quintessence model, can now finally be used for the statistical

inference from the SNIa data µ̂ j. This concludes the necessary preparations for our experi-

ments with the symbolic regression algorithm searching for suitable quintessence potentials.

The pipeline of the evaluation algorithm is schematically shown in Fig. 2.4

2.4.4 Experiments

In order to test our construction, we first study the results for a given potential. We choose the

cosmon potential [28], given by

V(φ) = M4 exp
(
−
αφ

M

)
(2.37)
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Primitives +,−,×,÷, exp, cos, sin

Terminals φ, M, π

Table 2.2 Function primitives and terminals for symbolic regression.

where we define M2 ≡ M2
p/16π and α > 0 is a free parameter of the model. The solution for

the distance modulus µ of the cosmon potential can be seen in Fig. 2.5.

The equation of state parameter wφ for this potential can be calculated with Eq. (1.60) and is

plotted as a function of redshift z in Fig.2.5. As expected, wφ approaches −1 asymptotically

for z = 0 from above and hence acts like the cosmological constant Λ at late times. However,

the time at which wφ crosses −1/3 and thus starts the cosmic acceleration is very dependent on

the choice of w0
φ. The smaller the difference of w0

φ to −1 (See condition (1.47), the bigger is the

redshift z, at which quintessence becomes repulsive. The energy density for our quintessence

field starts at Ω0
φ = (1−Ω0

M), as intended (See Fig. 2.5). This demonstrates, that the algorithm

works and that it generate reasonable results.

We continue our experiments by letting the algorithm search for quintessence potentials freely.

We choose a simple set of functions and constants as primitives and terminals of our individual

potential presented in Table 2.2.

Most potentials, resulting from combination of those building blocks by the symbolic re-

gression algorithm, are nonsensical. Not only are most of them undefined in a mathematical

sense, but for many individual potentials, the non-linear system of equation (2.26) and (2.30)

is mostly not even solvable, i.e. our Newton-algorithm will not converge. We have to sort

those potentials out, which inevitably shrinks the size of the population dramatically. Only a

few potentials survive and can therefore reproduce. To counter this problem we need to scale

the parameters of the symbolic regression algorithm up. Unfortunately, the limit of this scal-

ing is reached quickly and hence only some simple potentials can be generated with limited

computing resources. A collection of the best fit individuals can be found in Table 2.3

Many individual potentials are invertible and finding the right initial conditions may be possi-
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Figure 2.5 Solution for the Cosmon potential V(φ) = M4 exp(−αφ/M) with α = 1,
Ω0

M = 0.27 and w0
φ = −0.999. Top: Distance modulus against redshift with SNIa

data. Middle: Equation of state parameter against redshift. Bottom: Energy density
parameter with ΩM(z) + Ωφ(z) = 1
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Potential Likelihood L

M4φ−2 117.0568012

Mφ−1 117.0568012

M exp(−φ) 117.0548650

M2φ2 117.0050210

Mφ 116.9334976

Table 2.3 Solutions of five runs with n = 1000, g = 10, Pmate = 0.75 and Pmutate =

0.25. Ordered by their maximum likelihood with Eq. (1.77) from top to bottom.
Likelihood for ΛCDM is 117.34608028.

ble, but this does not guarantee the physical plausibility. Some potentials possess a minimum

at an unfortunate region for the field φ. This often results in oscillatory phenomena. The

condition (1.47) must hold true for the potential to realize the desired properties. Reaching

automation in avoiding other potentials is difficult due to the rich dynamics, which the equa-

tions of motion (2.25) can produce with different potentials.

Over the experiments with the algorithm, no potential demonstrated significant advantage over

the likelihood of the ΛCDM model with the same value for Ω0
M. This finding favors Λ as an

explanation for dark energy, despite its problems mentioned in section 1.3.1. However, the

differences of the quintessence models to the ΛCDM case are much lower than the 1σ un-

certainty of the SNIa measurements (See Fig. 2.6). Hence, at the moment we cannot decide

conclusively from the the data which model describes our cosmos the best, until observational

precision improves.

However, a scalar field governing the accelerated expansion of space is still a reasonable model

for dark energy, since we recover the constant equation of state, i.e. a field behaving "just like"

Λ, for a suitable interaction potential V(φ). Combination of different measurements (SNIa +

CMB + BAO) could bring more statistical certainty and thus more reliable candidates for the

potential in the process of symbolic regression .
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Figure 2.6 Plot of the difference between the ΛCDM model and the quintessence
model for the cosmon potential V(φ) = M4 exp(−αφ/M) with α = 1, Ω0

M = 0.27 and
w0
φ = −0.999. Dashed black is the 1σ uncertainty of the SNIa measurements.



Chapter Three

CONCLUSION

In order to advance our understanding of the fundamental nature of our Universe, we must

employ the most powerful statistical tools available. Symbolic regression and Bayesian infer-

ence are methods to automatically find reasonable mathematical expressions constrained by

observational data. Without doubt, symbolic regression is a promising approach and with a

sufficient amount of computing resources, it should be possible to solve many problems also

beyond the ones presented in this thesis. If the type of problem can be expressed as an op-

timization task, e.g. finding the right functional expression to a given set of data, symbolic

regression has the ability to find the right symbolic term with high precision. This is a great

advantage over traditional regression techniques, since the choice of the function is determined

in a completely data-driven approach. In our quest for insight about the cosmos, this frame-

work can potentially guide our path to theoretical advancements, through a statistical analysis

of observational data.

As discussed in this thesis, a combination of symbolic regression and Bayesian inference

is capable of finding symbolic potential terms for both classical mechanical systems and the

quintessence field. Its reconstruction capability, however, does not by itself prove the physi-

cal "truth" of the fittest individual potentials. The differences between the best quintessence

potentials presented in section 2.4.4 are orders of magnitude below the 1σ uncertainty of the

supernova type Ia data. Regarding classical systems such as the pendulum in section 2.3,

several potentials fulfill the constraints by the data nearly equally well, despite their diverse

genotypes. Hence, we have to include prior knowledge unconditionally, which involves a

choice of a suitable set of function primitives, boundaries for the initial conditions and free

45
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model parameters.

Having a reliable symbolic regression application at hand, further research should explore ex-

tended evolutionary algorithms with age-based optimization [29] and advanced recombination

and mutation algorithms.

The Bayesian parameter estimation of initial conditions for the dynamical differential equa-

tions provides promising results for classical mechanical systems. Since the executing Monte

Carlo Markov Chain depends on previous calculations, it is not possible to exploit paralleliza-

tion schemes as with an evolutionary algorithm. We introduced the construction of a pipeline

of algorithms in order to evaluate quintessence potentials in section 2.4. The central limita-

tion of the success is the computing strength of the resources available. Since it is desirable

to guarantee reasonable and physical results in the landscape of otherwise nonsensical poten-

tials generated by the algorithm, an implementation for multi-processor computing on larger

clusters will be necessary. The parallel computation of many individuals over several gen-

erations will ensure the diversity in the population of potentials necessary for evolutionary

algorithms to select the best individuals provided by the data and, at the same time, an effi-

cient time/complexity ratio.

Further, it may be an interesting endeavor to infer the initial conditions of the equations of

motion of the quintessence field for every individual potential separately from the data. The

parameters w0
φ and Ω0

M can have different values, depending on the cosmological model we

assume. The importance of finding the right initial conditions for the quintessence equations

of motion should therefore not be underestimated. The initial conditions are in general not

the only free parameters of the system. For example, the parameter in the cosmon poten-

tial (2.37) is free and should in principle be determined together with the initial conditions

for the field. Despite all the difficulties discussed in this thesis, the success of automatically

modelling potentials for a given set of data is motivation to further facilitate and advance the

statistical techniques as well as machine learning applications to gain more insight in physical

questions.
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